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Abstract

This paper is motivated by the need to minimize the payload mass required to establish an extraterrestrial
robotic colony. One approach for this minimization is to deploy a colony consisting of individual robots
endowed with the capacity for self-reproduction. An important consideration for the establishment of a self-
reproducing robotic colony is the identification of a seed. This paper outlines a novel algorithm to determine
the optimal seed for a class of self-reproducing systems, and illustrates the application of the algorithm on
a modified version of a self-replicating system documented in the literature.

The technical approach of this paper utilizes concepts from Generation Theory. Self-reproduction is
achieved by the actions of a robot on available resources, and so a seed for the colony consists of a set of
robots and a set of resources. In a previous approach to the seeding problem, a Seed Identification and
Generation Analysis algorithm included certain restrictive assumptions about the self-reproducing system
under consideration, finding possibly non-optimal seeds.

The original contribution of this paper is to provide an algorithm that finds an optimal seed for a more
general class of self-reproducing systems. The relationship between the size of the seed and the characteristics
of a self-reproducing system is also investigated. Further, the necessary and sufficient conditions to produce
an optimal seed are developed. An illustration of the algorithm’s operation is provided.

This work is applicable to any system that requires adaptable robots be operated in a resource-constrained
environment. It is expected that this paper will assist in moving from analyzing self-reproducing systems to

synthesizing them.

1 Introduction

Recent scientific research in self-reproduction has
raised the prospect of advances in such diverse ar-
eas as space colonization, bioengineering, evolu-
tionary software and autonomous manufacturing.
Inspired by the work of John von Neumann [1], ex-
tensive study of self-reproducing systems has taken
place, including cellular automata, computer pro-
grams, kinematic machines, molecular machines,
and robotic colonies. A comprehensive overview
of the field is documented in [2] and [3].

Von Neumann postulated the existence of a thresh-
old of complexity below which any attempt at self-
reproduction was doomed to degeneracy. However,
he did not define either complexity or degeneracy,
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nor did he compute the threshold’s value. An ex-
tensive literature survey in [4] indicates that no one
had published an evaluation of this threshold in
the following 60 years. Recently, [5] developed a
novel theory of generation that is able to compute
this von Neumann threshold. The results in [5] in-
cluded a necessary and sufficient condition for non-
degenerate offspring, i.e., offspring with the same
reproductive capability as the progenitor. Refer-
ence [6] presented a probabilistic version of these
results, and also demonstrated parallels with infor-
mation theory. The paper in [7] extended these
results by providing an algorithm that identified a
seed for a particular class of self-reproducing sys-
tems. This work builds on the previous paper by
providing a seeding algorithm that is applicable to
a more general class of self-reproducing systems.
Additionally, it is demonstrated that the output of



this algorithm is optimal.

The remainder of this section presents a rationale
for the identification of a seed for a self-reproducing
system, surveys background material on Genera-
tion Theory [5], discusses what makes the general
seeding problem difficult, and highlights the results
of [7] that serve as a foundation for the rest of
this paper. Section 2 details the necessary assump-
tions, definitions, and methodology for seed iden-
tification, and outlines a Seed Identification (SI)
algorithm. The properties of the SI algorithm are
also analyzed in this section. Section 3 illustrates
the application of the algorithm to a modified ver-
sion of a self-replicating system documented in [§]
and [9].

1.1 Motivation

Within the context of extra-terrestrial colonization,
current phased approaches to Martian exploration
see the development of an enduring robotic pres-
ence on the Moon in the next five years. Sev-
eral space agency roadmaps, of which [I0] is typ-
ical, suggest that individual countries will deploy
advanced robots on an as-needed basis to expand
the size of an established colony. It is well known,
however, that for every unit mass of payload to be
launched into space, eighty additional units of mass
are required to be launched as well [I1]. Hence,
the motivation to endow robots with the capac-
ity for self-reproduction. These machines would
be able to utilize on-site resources to enlarge their
numbers when deemed necessary for a given task.
Extra-terrestrial systems with such technology are
less dependent than traditional colonies on the fis-
cal constraints of multiple launches of robots. Self-
reproduction may therefore provide a highly cost-
effective solution to the problem of establishing
extra-terrestrial colonies.

In order to minimize mass, it would be even more
efficient to recognize the required elements for the
initiation of a self-reproducing system, and send the
smallest quantity of these elements into space. The
identification of this minimal “seed” is the goal of
this paper.

1.2 Highlights of Generation Theory

We first state what is meant by the following terms
that will be used throughout the paper: repro-
duction, replication, self-reproduction, and self-
replication. For a historical perspective of the first
two terms, the reader is referred to Freitas’ excel-
lent discussion on the subject in [2]. We consider
reproduction in biological systems to imply the ca-
pacity for genetic mutations and the potential for
evolution. Thus from an information standpoint,
reproduction involves a change to the DNA code
during the generation of progeny. Likewise, we
will take reproduction in an artificial system to im-
ply a change in the information specifications of
an offspring. We reserve the term replication for
progeny that have identical information content to
that of the progenitor. Self-reproducing and self-
replicating will be used to refer to those entities
that perform the information equivalent of asexual
reproduction or mitosis, i.e., the entities can repro-
duce or replicate based on the information specifi-
cations of only one progenitor.

The theory that is surveyed here formalizes self-
reproduction by “machines,” a term describing any
entity that is capable of producing an offspring re-
gardless of its physical nature. Thus a robot, a bac-
terium, or even a piece of software code is consid-
ered to be a machine in this theory if they can each
produce another robot, bacterium or some lines of
code respectively. These machines utilize resources
to self-reproduce. A selected resource is manipu-
lated by the parent machine via an embedded gen-
eration action to produce an outcome, which itself
may or may not be a machine. Thus we can state
the following:

Definition 1. A generation system is a quadruple
I'=(U,M,R,QG), where

e U is a universal set that contains machines,
resources and outcomes of attempts at self-
reproduction;

e M C U is a set of machines in the context
described;

e R C U is a set of resources that can be utilized
for self-reproduction; and,

e G: M x R— U is a generation function that
maps a machine and a resource into an out-



come in the universal set, and not necessarily
in the set of machines.

Furthermore, it is possible that M N R # @, and
also M U R # U, as illustrated in Fig. [l The
former implies that machines can belong to the set
of resources, and the latter states that outcomes
of attempts at generation may be neither machines
nor resources.

U

Figure 1: Pictorial representation of Definition [

When a machine x € M processes a resource v € R
to generate an outcome y € U, we write:

Y= G(LE,T). (1)

In (), we say that “x is capable of generating y,”
and we call the process reproduction. If we have
x = G(z,r) in (), then we say that “z is capable
of generating itself,” and we call the process repli-
cation.

We make use of concepts from graph theory [12] in
this paper. Equation (Il) may be represented by a
directed reproduction graph, vy, as shown in Figure
In this diagram, machine x and outcome y are
vertices, resource 7 is an edge, and the direction of
the edge indicates that it is machine x that uses
resource r to generate outcome y.
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Figure 2: The directed reproduction graph of ().

Definition 2. The directed graph representation
of a generation system I' = (U, M,R,G) is the
directed supergraph (V,E) containing all directed

reproduction graphs that produce machines in M.
Thus, the vertex set, V', of the supergraph is equal
to the machine set, M, and the edge set, E, of the
supergraph is equal to the binary relation (M, M,~).

Definition 3. The generation sets in a generation
system are defined as:

o Mo = M, the set of all machines;

o M;.1, the set of all machines that are capable
of producing a machine of M;, Vi > 0. That is,
forx € M1, 3y € M; such that y = G(z,r).

These sets are nested with the innermost genera-
tion set being important for self-reproduction. This
set can be defined as:

My, = ﬁ M;. (2)
=0

It is shown in [5] that generation always proceeds
outwards. Also, the notion of the rank of a gener-
ation system, as defined below, is emphasized.

Definition 4. The rank of a generation system,
p(I'), where T' = (U, M, R, G) with generation sets
M;, © > 0, is the smallest integer p such that
M, = Myyq. If Vi,M; # My, then the genera-
tion system has infinite rank.

For a generation system of finite rank p, the nesting
of the generation sets stop at the integer p. All
generation sets of order greater than p (up to and
including M) are equal. A generation system that
has a finite number of machines always has finite
rank.

Definition 5. The rank of a machine, p(z), in a
generation system I' = (U, M, R,G) with genera-
tion sets M;, i > 0, and p(I") = p, is equal to i if
x € M;\M,11 (“deficient generation rank”), or is
equal to p if x € (Noog M; (“full generation rank”).

Definition 6. A generation cycle is a sequence of
generations resulting in the production of a ma-
chine identical to itself after n gemerations.

Machines capable of replication (a generation cycle
of order one) in a generation system must belong
to My, and any exit from M, is irreversible. It
is possible for offspring machines to belong to M,



as long as their progenitors do as well. Thus the
requirements for non-degenerate reproduction and
replication are quantified. It is proved in [5] that
there is a minimum threshold of rank above which
a machine is able to generate an offspring without
a decrease in generation rank. We call this the von
Neumann Rank Threshold, 7., and define

The reader is referred to the material in [5] for
proofs of the above statements, as well as many
other insights into the information requirements of
self-reproducing systems.

1.3 The Seeding Problem

There are many factors that contribute to the in-
herent difficulty of seeding, including;:

(a) the possibility that a given generation system
is made up of multiple, distinct subsystems,
each with a different seed. Alternatively, there
could be multiple, indistinct subsystems, with
some common seed elements for each subsys-
tem. Any seeding algorithm would have to be
able to deal with both possibilities without any
a priori knowledge about the system.

(b) the potential for generation cycles within a
given self-reproducing system. If these cycles
exist, then one naturally wonders which of the
machines in a particular loop should be chosen
to belong to the seed.

(c) the fact that degenerate machines, i.e., those
that have deficient machine rank, should not
belong to the seed for a self-reproducing sys-
tem. This is because there will be some future
time when their progeny can no longer pro-
duce offspring that are machines. On the other
hand, if the whole system is degenerate, and
there does not exist a machine with full gener-
ation rank, then there is a need to identify the
machine that is the least degenerate.

(d) the complexity of the resource set. A consis-
tent theme in the literature of self-reproducing
systems is that a machine does not operate on
one resource element during a generation at-
tempt, but rather on an ordered list of elements

that constitute a particular resource. This list
can include duplicates of elements contained in
another resource that is also an ordered list.
In addition, each list can also include other
machines, degenerate or otherwise, since other
machines can be cannibalized or act as cata-
lysts for generation. Thus, each resource needs
to be carefully scrutinized in order to determine
the contents of the seed.

It is perhaps because of all of these factors that
the seeding problem is still mostly open. The only
known work in this area is our previous attempt
at tackling a restricted version of this problem for
a small class of generation systems, [7], resulting
in the Seed Identification and Generation Analy-
sis (SIGA) algorithm. We now summarize some
of the assumptions and simplifications that we had
made to help structure the problem, but which, un-
fortunately, made non-optimal seeds possible. The
remainder of the paper builds on this summary.

1.4 A Prior Solution to Seeding

In [7], assumptions were made with respect to both
machines and resources. We first assumed that ev-
ery resource in the set R of a generation system
was utilized by a progenitor machine so that an-
other machine could be produced.

Assumption 1. Given a generation system I' =
(U,M,R,G), we assume that ¥Vr € R,3x € M such
that G(z,r) € M.

This assumption simplified the selection procedure
of resources since it pointed to the condition that all
resources were necessary to produce an offspring.
Hence, a seeding algorithm could simply identify
all possible resources as constituents of a seed. If
we accepted that all resources were necessary how-
ever, then we allowed ourselves the possibility of se-
lecting redundant resources. For instance, if there
existed two resources such that a progenitor ma-
chine would produce the same offspring with each of
those two resources, then by taking both resources
to belong to the seed, a redundant selection was
made and the resulting seed was non-optimal. We
ignored this possibility and considered it an avenue
for future refinement.

We allowed each resource to itself contain an or-
dered list of physical elements that could include



machines. We therefore defined a containment re-
lation as follows.

Definition 7. If machine x; belongs to an ordered
list of the elements of resource rj, then we say that
x; 1s contained in r;, and we write x; < r;, where
“<” 4s the containment relation.

Of course, if machine z; was a resource itself, then
this relation still held true. We needed the follow-
ing definition as well, before making an assumption
on resources that has been validated by all litera-
ture to date.

Definition 8. If machines x1,xs,...,x, are con-
tained in resource r, then we use the motation
r\(x1,z2,...,2,) to refer to an ordered list of the
elements of r that does not contain the machines
T1,X2y...,Ty.

Assumption 2. Given a generation system I' =
(U, M, R,G), we assume that if machine x is con-
tained in resource r, x < r, then the ordered list of
the elements of r that does not contain the machine
x also belongs to the set of resources, i.e., r\x € R.

Next, we assumed that every machine in the gen-
eration system had a progenitor machine.

Definition 9. A surjective generation system is
a generation system I' = (U, M, R, G) where Yy €
M,3z € M, and 3Ir € R such that y = G(z, 7).

We further assumed that there existed a machine in
the generation system that was capable of produc-
ing any machine in the system after y generations.
This was a special case of a surjective generation
system.

Assumption 3. We assume that in the generation
system T' = (U, M, R, G), 3xg € M such that Va1 €
M,3p < p,3ry,re, ... 1y, selected from R such
that

G(...G(G(G(xo,71),72),73) - - -y Ty ) = X1

It was this rather restrictive assumption that, in
part, gave us the SIGA algorithm. The approach
to developing that seed identification algorithm
was similar to the Generation Analysis Algorithm
(GAA) stated in [5], and in fact utilized the GAA
in its operation. The GAA employs the concept of
an outer layer, first introduced in [5] and defined
as follows.

Definition 10. The outer layer of a generation
system I' = (U, M, R, G) is the set Mo\M;. This
is the set of machines such that, no matter what
resource they use, they produce an offspring that is
no longer a machine, i.e.,

{reM:Vre R,G(z,r) ¢ M}.

After an outer layer is removed, a generation sys-
tem of reduced rank remains. The GAA works by
peeling away the outer layers of each of the gener-
ation systems I';, 0 < ¢ < p. We applied a sim-
ilar notion to the development of the SIGA algo-
rithm, having that algorithm peel away outer lay-
ers in both the set of machines and the set of re-
sources, before picking one machine and all reduced
resources to belong to the seed set (see [7] for the
full algorithm methodology, pseudocode, and an ex-
ample application).

2 Seed Identification

For a more general approach to the seeding prob-
lem, we consider an arbitrary generation system.
The number of distinct machines is finite in this
system, and the number of distinct resources is fi-
nite as well. Just as von Neumann postulated au-
tomata that self-reproduce in a “sea of parts” [,
we assume that an inexhaustible supply of each re-
source exists. Another common assumption is that
all the machines in the generation system need to
be produced, even though they need not all be-
long to the seed set. Of the assumptions listed
previously, we require that Assumption 2] hold for
this system also. Typically, the mass of the re-
sources must be optimized. Since the machines in
a generation system are often of similar mass, it is
frequently specified that the quantity of machines,
rather than the mass, is also minimized.

The given self-reproducing system may not be sur-
jective, and even if it is, we may not be able to
use the SIGA algorithm because Assumption Blmay
fail. To formulate seeding requirements in a mathe-
matically precise way, we begin by defining a seed,
selecting the class of generation systems that we
will deal with, and then using the properties of
these systems to help setup the seeding problem.



2.1 Problem Definition and Setup

We will use a more compact notation to denote the
sequential selection of resources. Let (r,,) be a
sequence of 1 resources from R, so that

G (zo, (rpy)) == G(...G(G(xo,71),72) - -, Ty )-

Then the general definition of a seed is as follows.

Definition 11. LetI' = (U, M, R,G) be a genera-
tion system. A seed of order vy for T is a set

S = MgURg, where
Ms = {x1,29,...,2,}, Mg C M, and
RS - {T17T27"'7TM}; RS g R;

such that Yy, € M,3pu < oo,3(ry,) € Rg,Iyo €
Mg, such that

G (Yo, (1)) = 41

In the rest of the paper, we design an algorithm
to produce a seed as per the above definition. The
idea is to reduce certain generation systems into
a form that can be easily seeded. We need a few
more definitions before we can indicate the type of
generation systems our algorithm is restricted to.

Definition 12. The generation system ' =
(U, M, R,G) is strongly regular if whenever y =
G(x,(ru,)), where x and y are machines and (r,,)
is a sequence of uy resources, we have y 4 r for all

T E ()

Thus, in a strongly regular generation system, no
machine can be contained in its ancestry.

Definition 13. A family is a generation system
I'=(U,M,R,G) where ¥(z,y) € M,3z € M, and
(rn), (rm) € R such that © = G(z,(r,)) and y =
G(z, (rm)). A matriarch of a family is an element
xog € M such that V1 € M,x1 # xo,3(ry,) selected
from R such that G(x1, (ru,)) = %o-

Note that empty sequences are allowed in the above
definition of a family, so that it is possible to con-
sider either x or y to be the common ancestor z.

Proposition 1. Every familyT' = (U, M, R, G) has
a matriarch.

Proof. See Appendix. O

Proposition 2. The directed graph representation
of a family I = (U, M, R, G) is weakly connected.

Proof. See Appendix. O

The converse to Proposition 2lis not true: a weakly
connected digraph does not imply that the repre-
sented generation system is a family (see Figure
for an example).

1 T2
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Figure 3: A weakly connected digraph representing
two families.

Assumption 4. We assume that the generation
system to be seeded, I' = (U, M, R,G), is strongly
reqular and made up of one or more disjoint fami-
lies.

The nature of the generation system in Assump-
tion M helps setup the seeding problem when we
note that the underlying undirected graph of a
family is connected. Since the connected compo-
nents of a graph are the equivalence classes of the
path existence relation between two vertices [12],
and the directed graph representation of the gen-
eration system to be seeded is made up of one or
more connected components, we can partition this
graph into its connected components. Thus, for the
class of systems in Assumption[] seeding the whole
generation system may be accomplished by seeding
each individual family.

To seed by family, we need to determine all the
descendants of a particular machine. This is facil-
itated by the notion of a “generation subsystem of
a machine,” which is a subset of a particular family
and is itself a family.

Definition 14. The generation subsystem of ma-
chine x¢ is the generation system

Fmo = (U7 Mmoy Rmoy G)



where,

My, = |JM
=0

M: = {zeM:3(r;)eR:x= Gz, (r;)}

Ry, = GR;O
=0
R, = | J{(r) € R:Glao, (r))) € M}.

In Definition 4] M is the set of all the descen-
dants of xy produced after ¢ generations, M, is the
set of all the descendants of zo, RY is the set of all
resource sequences of length 7 that would produce a
descendant of xp, and R, is the set of all resource
sequences that would produce a descendant of xy.
Hence, the generation subsystem of x is the largest
family for which zq is a matriarch.

The idea for the SI algorithm is to determine the
subsystems for which there exists one machine ca-
pable of generating all other machines in the sub-
system. It is among these subsystems that one may
find a matriarch of a family. Consequently, indi-
vidually seeding each of these subsystems of ma-
triarchs seeds the whole family. We will let Mo
denote the set of matriarchs.

In the generation system of a matriarch, zq, every
machine in the subsystem can be produced except
possibly zq itself. Thus, in the course of seeding
the subsystem of x(, the machine to pick for the
seed set of the subsystem, S,,, is 9. The ratio-
nale for this process of identifying one machine of
highest rank that can generate every machine in its
subsystem comes from the next two propositions.

A necessary condition to minimize |Mg| is the fol-

lowing.

Proposition 3. Let I' = (U,M,R,G) be a fam-
ily, and S be a seed set of T' for which |Mg| is a
minimum. Then Vx € Mg,

P, Z.f ’Moo’ > 0,
p(r) = .
maxyen p(y), if |[Mso| = 0.

Proof. See Appendix. O

Corollary 1. If ' = (U, M, R, G) is a family, and
|Mso| > 0, then |Mg| < |Ms|. This is because an
optimal Mg can only include machines from M.

On the other hand, if |My| = 0, then an optimal
Mg has |Mg| = 1. This is because there is only one
machine for which the mazimum rank condition is
satisfied, a consequence of the fact that generation
always proceeds outwards [5].

A sufficient condition to minimize |Mg| is the fol-
lowing.

Proposition 4. Assume that the generation sub-
system of machine z, Ty = (U, M;, R, G) is
strongly reqular. Then a seed set for Iy, S, where
Mg, = {z} and Rs, = R,\M, has the minimum
| Ms,|.

Proof. See Appendix. O

In a strongly regular family, if a machine is con-
tained in a resource, then that resource cannot be
utilized in any sequence of resources used to gener-
ate the machine. Hence, the notion of containment
has no effect on the seeding process for these sys-
tems. This is why we restrict the class of generation
systems in this paper to those that are solely made
up of strongly regular families.

With these preliminaries out of the way, we can
concentrate on the actual seeding and partitioning
process.

2.2 The SI Algorithm

Assuming the given self-reproducing system of n
machines and m resources is strongly regular and
made up of one or more disjoint families, the first
step of the algorithm would be to find the genera-
tion subsystems of all the machines in M, i.e.,

Step 1
For all z; in M, 1 <i <n, determine I';,.

Since we can represent a generation system as a
weighted, directed graph, we can use established
notions in graph theory to aid us in the subsystem
identification process. With each machine (vertex)
as a starting point (root) in the initial generation
system (directed graph), we need to find the sub-
system (maximally connected subgraph) that can
be generated (reached from the root).

Two well known algorithms to compute the reach-
able components in a graph are the Breadth-First



Search (BFS) and the Depth-First Search (DFS)
algorithms [I3,[141[I5L16]. Applying either of these
algorithms to the graph of the generation system
in Step 1 yields I';;, for all 1 <7 < n. In these sub-
systems, there is one machine capable of generating
all machines in M, except possibly z; itself. We
now want to partition the initial generation system
in the following manner.

Step 2
Select the I'y, where My, | > |M, |, V1 < j <n,
by counting the cardinalities of the machine sets
and sorting these sets.

This I'y, is the largest generation subsystem of the
initial self-reproducing system. We consider this to
be our primary generation subsystem, and regard
the system where the machine set is M\M,, to be
a secondary generation subsystem. The secondary
subsystem requires the removal of all z € M, from
M. The idea is to seed our primary subsystem first,
and then go back to the secondary subsystem and
partition and seed iteratively.

In Step 2, if there are two subsystems I';; and I'y;
with the same machine set, then both z; and x; are
matriarchs for the same family. To ensure the opti-
mal seeding of this family, we will need to compare
the cost of the seed resources when the subsystem
of z; is a primary subsystem and when the subsys-
tem of x; is a primary subsystem.

However, before we can tackle seeding of a primary
subsystem (and by extension, the seeding of all
other partitions), we need to ensure that the sub-
system under consideration has the property that
each offspring is generated from only one resource.
Thereafter, if we select all resources to be a part
of the seed set for the subsystem, we have avoided
any unnecessary selection of redundant resources.

Let J : R — R be a cost functional representing the
mass of a resource, or the quantity required of a re-
source, or the resource’s availability, etc. We will
again make use of a result in graph theory for the
next step. In graph theory, a subgraph of a finite
directed graph is called a branching if it has the fol-
lowing properties: it contains all the vertices of the
original graph (spanning); it is circuit-free; and the
number of edges entering any vertex is less than or
equal to one. If the number of entering edges is zero
for only one of the subgraph’s vertices, r, and the
remaining vertices all have only one edge entering

them, then the branching is a directed tree with
root r [15]. The problem of finding a branching
for which the sum of the edge costs is optimal (a
maximum) was solved independently in [I7.[18/[19],
is well-treated in [I3,15,20], and can be efficiently
implemented using [21].

We have a similar situation if we first add a new
machine, 2/, so that all instances of the resources
(edges) that are used to produce machine x; (enter
the root vertex) in the primary subsystem (directed
graph) are now used to produce machine z}. We
can then use the Chu-Liu-Edmonds algorithm to
obtain a generation subsystem where Proposition
M is still applicable, but where redundant resources
are also not present.

The implementation of the optimal branching algo-
rithm that is assumed requires that: 1) the directed
spanning tree that is found has a minimum rather
than a maximum cost, and 2) a root vertex is ac-
cepted as additional input, so that search for the
tree starts from this root instead of the first en-
try in a vertex-edge incidence list. We utilize these
notions in formulating Step 3 of the SI algorithm.

Step 3
for all the matriarchs of the largest generation
subsystem do

if in the graph representation of I'y,, x; has
entering edges then
Add a new vertex .
Change these edges so that they now enter
end if
Find the directed minimum spanning tree
(DMST) in the graph of 'y, with root at x;.
I'z;min < the DMST of I'y,.
end for
Select the I'y,min for which >

minimum.

Teinmin J(T) is a

We can now seed the resultant self-reproducing sub-
System.

Step 4
Sey = {2} U (Ramin \Ma,).-
Next, we obtain the generation system that remains

to be seeded.

Step 5
Remove all x € M, from M.



We continue the process so far on the subsidiary
generation subsystems, iterating from Step 2 until
there are no more machines left in M. The entire
seed set is the union of all the seed sets for the
various generation subsystems.

Step 6
if M # @ then
Go to Step 2.
else
S — S,
Stop.
end if

2.3 Properties of the SI Algorithm

In this subsection, we make some claims about the
Seed Identification algorithm and the resultant seed
that is output. The proofs of these claims can be
found in the Appendix.

Proposition 5. The SI algorithm is correct. That
18, the output of the algorithm is a seed for the given
generation system.

Proof. See Appendix. O

Proposition 6. The SI algorithm is complete.
That is, the algorithm will output a seed if one ex-
ists for the given generation system.

Proof. See Appendix. O

Proposition 7. The SI algorithm is guaranteed to
stop after a finite number of iterations. The best-
case time complexity for the operation of this al-
gorithm is O(3n + nm + 2m + 1) iterations. The
worst-case time complexity for the operation of this
algorithm is the worst of O(n*m + 4n + 2m) and
O(n? + 5n + m) iterations.

Proof. See Appendix. O

Proposition 8. The SI algorithm produces a seed
that is optimal with respect to the mumber of ma-
chines and the cost of the resources in the seed.

Proof. See Appendix. O

Proposition 9. Given a family I' = (U, M, R, G),
the size of the seed either increases or stays con-
stant with expanding M or R.

Proof. See Appendix. O

3 An Example Application of the
SI Algorithm

We can use Generation Theory and the algorithm
in this paper to analyze a modified version of the
Semi- Autonomous Replicating System designed by
Chirikjian et al. [8,9].

In the original design, we can take M to be the set
of all entities that are each made up of two or more
LEGO Mindstorm kit components fixed together in
some way. Let

M = {xl,xg,$3,$4,$5,$6,$7,$8,$9}, and

R = {T17T27T37r47r57T67T77T87T9}7
where we define each of the constituent machines
and resources in the manner that follows. The se-

quence of generation steps is also outlined. The
replication process is illustrated in Fig. @l
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Figure 4: The semi-autonomous replication process
of the Suthakorn-Kwon-Chirikjian robot [§].

x1 := prototype robot

r1 := (conveyor-belt/sensor unit, docking unit,
electrical connector, central controller unit (CCU),



electrical cable)

9 := chassis assembly station

x9 = G(x1,71)

r9 := chassis

x3 := chassis aligned in assembly position
x3 = G(x1,72)

r3 := (robot control system, x3)

x4 := RCX-chassis assembly

x4 = G(w2,73)

ry := gripper assembly/disassembly station :=
(CCU, electrical connector, ramp and lift system,

gripper)

x5 := prototype robot with gripper
x5 = G(x1,74)

x1 = G(x5,74)

r5 := (left LEGO hook, right LEGO hook, CCU,
electrical connector, stationary docking sensor, mo-
torized pulley unit)

g := motor and track assembly station

zg = G(z5,75)

r¢ := (left LEGO track, right LEGO track)

x7 := tracks aligned onto hooks

r7 = G(71,76)

r7 := (motor/sensor unit, z4)

g := RCX-chassis-motor assembly, moved to posi-
tion

rg — G(ml, 7‘7)

rg ‘= ($7, xg)

g := prototype robot on hooks

zg9 = G(z6,73)

T9 i= X9

r1 = G(x1,79)

The original Suthakorn-Kwon-Chirikjian genera-
tion system above is a single family, and so the
application of the SI algorithm terminates after
one iteration. If we take into account the necessity
of batteries for operation, the application becomes
non-trivial. We stipulate that the robot controller
(RCX) runs on charged batteries, and that there

is a battery charger running on a supply of readily
available electricity that can charge uncharged bat-
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teries. Thus, the following changes to the system
need to be made.

M {x1, @0, 23, 24, T5, T, T7, T8, T, T10, T11}
R = {ri,r2,73,74,75,76,77,78,79, 710},
x10 := battery charger

r10 := (electricity, uncharged batteries)
x11 := charged batteries

r11 = G(710,710)

and the definition for r3 becomes

r3 := (robot control system, 3, x11)

It follows that we have the generation diagram in-
dicated in Fig. Bl

Tq

Figure 5: Directed graph representation of
the modified Suthakorn-Kwon-Chirikjian semi-
autonomous replicating system.

This generation system is strongly regular, and is
made up of two disjoint families. Applying the SI
algorithm to this generation system yields an opti-
mal seed for the system. To demonstrate the work-
ings of the algorithm, we give a part of the output
at each step.

Step 1: The machine sets of I';;,1 < ¢ < 11 are the
following.

Mwl = {331,332,333,334,335,[176,!177,!178,!179}

MwQ = {334}
My, =0
My, =0

M$5 = {331,33'2,33‘3,33‘4,335,[176,!177,[178,!179}



My = {z9}
M, =0
My, =0
My, =0
My = {z11}
My, = O

Step 2: We can select either z1 or x5. Since the
sets of machines that can be generated are equal,
x1 and x5 must be matriarchs for the same family.

Step 3: For z1,
Rxlmin = {7"1,T2,7‘3,T’4,7"5,7’6,7"7,7"8,7'9}.

The only choice made by the DMST algorithm is
the selection of r9 over ry in generating z, since
the former has lower cost.

For xs, Rm5min - {rla T2,73,T4,75,76,77, TS}'
The DMST algorithm does not select rg.
I'ssmin 1s selected.

Step 4: For the first family, we get

Ses ={xs} U {ri,ro,m3\(x3,211), 74,75, 76,
r7\74, 78\ (77, 78)}.

Step 5:
Step 6:
Step 2:
Step 3:
Step 4:

We are left with M = {z19, 211}
We now go back to Step 2.

We select x1g.

Ry gmin = {10}

For the second family we get
S0 = {710} U {710}

Step 5:
Step 6:

We are left with M = ©@.

A seed for this system is

S ={xs,xz10} U {ri,72,7m3\(x3,211),74,75, 76,
ro\xa, 78\ (27, 28), 10}

We have thus arrived at a very logical, yet infor-
mative result - the battery charger and the proto-
type robot with the gripper can initiate the semi-
autonomous replicating system. Contrary to intu-
ition, the optimal seed does not include the pro-
totype robot together with resources, but instead
includes the prototype robot with gripper and fewer
required resources.
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4 Conclusions and Future Work

A novel algorithm to identify an optimal seed for
a class of generation systems has been proposed.
It utilizes the concepts of families and strong regu-
larity to consider resources and their composition,
deal with machines of deficient rank that are used
as resources, and isolate seed machines from gener-
ation cycles. We have developed the necessary and
sufficient conditions to produce an optimal seed,
and investigated the relationship between the size
of the seed and the characteristics of a generation
System.

The avenues for future research include relaxing the
requirement for strong regularity, and examining
how one can control a generation system to pro-
duce an optimal seed. Once issues of control have
been resolved, the ideal of finding a seed that can
initiate an evolving self-reproducing system needs
to be pursued. With the theory in place to ana-
lyze generation systems, the next step is to develop
theory to synthesize generation systems.

The ST algorithm needs to be extended to 1) allow
for the determination or possible non-existence of
a seed of order vu, with vy pre-specified; 2) in-
corporate some notion of the quantity of a seed re-
source needed to perpetuate a system; and 3) recog-
nize and compensate for time constraints that may
impose a larger-size seed upon the system. These
three apparent limitations will be overcome in fu-
ture work.

Appendix
Proposition [

Proof. The proof is by construction. Specifically,
we outline an iterative algorithm that is guaran-
teed to identify a matriarch for a family. At the
end of every iteration, the algorithm produces a
partition of the family into a candidate matriarch,
a set of descendants of that candidate matriarch,
and a set of machines yet to be considered. During
each iteration, the size of the set of machines yet
to be considered is decreased by at least one unit,
the size of the set of descendants of the candidate
matriarch is increased by at least one unit, and the
candidate matriarch itself may be updated. The al-



gorithm terminates when the set of machines to be
considered is empty, at which time the candidate
matriarch is confirmed as a matriarch.

To initialize the algorithm, consider two arbitrary
machines z and y of the family. Since x and y are
in the family, they have a common ancestor z. We
consider three cases:

(1) If z = z, then the candidate matriarch is x, the
set of descendants of the candidate matriarch is
the set of all machines obtained in the process
of generating y from z (including y), and the
initialization is complete.

If z = y, then the candidate matriarch is y, the
set of descendants of the candidate matriarch is
the set of all machines obtained in the process
of generating z from y (including x), and the
initialization is complete.

If 2z is neither x nor y, then the candidate ma-
triarch is z, the set of descendants of the can-
didate is the set of all machines obtained in
the process of generating both x and y from
z (including = and y), and the initialization is
complete.

Once the algorithm is initialized, each iteration pro-
ceeds as follows. Let x be the candidate matriarch,
and consider an arbitrary machine y in the set of
machines yet to be considered. Since x and y are
in the family, they have a common ancestor z. We
consider four cases:

(1) If z = z, then the candidate matriarch remains
x, and all the machines obtained in the pro-
cess of generating y from x (including y) are
transferred into the set of descendants of the
candidate matriarch and removed from the set
of machines yet to be considered. This com-
pletes the iteration.

If z = y, then the candidate matriarch becomes
y, and all the machines obtained in the process
of generating x from y (including z) are trans-
ferred into the set of descendants of the can-
didate matriarch and removed from the set of
machines yet to be considered. This completes
the iteration.

If z is neither x nor y but is in the set of de-
scendants of the candidate matriarch, then the

12

candidate matriarch remains x, and all the ma-
chines obtained in the process of generating y
from z (including y) are transferred into the
set of descendants of the candidate matriarch
and removed from the set of machines yet to
be considered. This completes the iteration.

If z is neither x nor y but is in the set of ma-
chines yet to be considered, then the candidate
matriarch becomes z, and all the machines ob-
tained in the process of generating both x and y
from z (including = and y) are transferred into
the set of descendants of the candidate matri-
arch and removed from the set of machines yet
to be considered. This completes the iteration.

]
Proposition 2L

Proof. Weak connectivity of the directed graph
representation of I' = (U, M, R, G) follows directly
from the definition of a family. Indeed, since I'
is a family, for a particular (x,y) € M,3z € M,
and (), (rm) € R such that x = G(z,(ry,)) and
y = G(z,(rm)). In the directed graph representa-
tion of I, there is a path from z to x through the
sequence of edges labeled (r,), and a path from z
to y through the sequence of edges labeled (ry,).
Hence, in the undirected version of this directed
graph, there is a path from x to y via z. By the
definition of weak connectivity, this means that x
and y are weakly connected in the directed graph.
Since this is true for all vertex pairs in the directed
graph representation of a family, the entire graph
is weakly connected. O

Proposition [3L

Proof. This proof is by contradiction. Let |Mg| be
a minimum.

Case 1: |Myo| > 0.

Suppose that 3z € Mg such that p(x) < p. From
Generation Theory [5], since I' is a family, Jy €
M,r € R such that z = G(y,r), and p(z) < p(y) <
p-

From the definition of a seed (Definition [1), 3z €
Mg, (ry) € Rg such that y = G(z, (ry,)).

Thus, both z and = belong to Mg.



Let (ry) := ((rn),r), so that (r,,,) € R.

Then G(z, (1)) = x, and so S’ = (Ms\{z}) U Rg
is a valid seed.

But |Mg\{z}| < |Mg], and so |Mg| is not a mini-
mum, a contradiction.

Case 2: |My| = 0.

Suppose that 3z € Mg such that p(x) is not the
maximum over all machines in the family. From
Generation Theory [5], since I" is a family, Jy €
M,r € R such that x = G(y,r), and p(z) < p(y) <
p.

From the definition of a seed (Definition [I]), 3z €
Mg, (ry) € Rg such that y = G(z, (ry,)).

Thus, both z and = belong to Mg.
Let (ry) := ((rn),r), so that (r,,,) € R.

Then G(z, (1)) = z, and so 8" = (Ms\{z}) U Rs
is a valid seed.

But |Mgs\{z}| < |Mg]|, and so |Mg| is not a mini-
mum, a contradiction.

O
Proposition 4l

Proof. This proof follows directly from the defini-
tions of strong regularity and generation subsys-
tem. Indeed, if Rg, "M, = @, then we need to have
|Mg,| > 1 so that at least one machine is present
to generate the system. Since I'; is the generation
subsystem of x, r can generate every machine in
M, by definition. Since T, is strongly regular, any
resources that contain machines cannot be used to
generate those machines, by definition. This im-
plies that machines additional to « are not needed.
Therefore, the set S, = {x} U (R;\M,) is a valid
seed.

Moreover, |Mg,| = 1, the minimum possible. O
Proposition [5l

Proof. We have to prove that the output set S is a
seed for the initial self-reproducing system. Since I'
is a union of families, and S = | S, for x belonging
to the set of matriarchs Mo, it suffices to prove that
each S, is a seed for one of the constituent families.
Thus, we will show that each of Steps 1 through 4
is correct.
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Step 1.

By assumption, the generation system to be seeded
is made up of one or more strongly regular families.
The directed graph representation of a single family
is weakly connected. Thus, the directed graph rep-
resentation of the initial generation system is made
up of one or more weakly connected components.

Each vertex in the directed graph representation
belongs to a weakly connected component. Both
the BFS or DFS algorithms are able to correctly
find the vertices reachable from a root in a weakly
connected directed graph [13]. Thus, the use of
either of these algorithms ensures that this step is
correct.

Step 2.

Here, the SI algorithm considers a finite number of
sets each with finite cardinality. There are several
known algorithms that are able to correctly count
the elements in a set and sort the sets in descending
order. The use of any of these algorithms results in
the selection process being correct.

Step 3.

To find the directed minimum spanning tree for
the selected weakly connected component requires
use of the Chu-Liu-Edmonds algorithm, or Tarjan’s
efficient implementation of the same. These algo-
rithms have been proved to be correct [17,[18],21].
Just as in Step 2, there are known algorithms for
correctly evaluating the sum of a functional on the
elements of a set, sorting these sums, and picking
the set with the minimum sum. The use of any
of these algorithms results in the selection process
being correct.

Step 4.

This part of the proof is similar to the proof of
Proposition @ Since I'ypnipn is the generation sub-
system of z with the added property that each off-
spring is generated from only one resource, x can
generate every machine in My, = M, by defini-
tion. Since 'y 18 strongly regular, any resources
that contain machines cannot be used to generate
those machines, by definition. This implies that
machines additional to x are not needed. Thus,
the set S; = {x} U (Rymin\M,) is a valid seed.

Therefore, S, is a seed for all I',.



Proposition [6l

Proof. We have to show that if a seed exists, the al-
gorithm in this paper will output one possible seed.
Consider that a seed for a generation system al-
ways exists - this is the trivial seed, consisting of
all the machines and resources in the generation
system, i.e., S = M U R. Indeed, the algorithm
presumes this seed at the start, before removing
redundant resources and machines that belong to
a matriarch’s subsystem. Proposition [6l shows that
the output of the algorithm is a seed.

Thus, completeness is guaranteed. O
Proposition [Tl

Proof. Note that each iteration of the algorithm
removes elements from a set with finite cardinality,
and the algorithm stops once the set is depleted.

Consider the time complexity of Steps 1 to 5 during
the first iteration of the algorithm.

In Step 1, the use of either one of the BF'S or DFS
algorithms has time complexity O(n + m) [13].

In Step 2, the fact that each machine has to be
visited in order to determine the cardinality of the
machine set of its generation subsystem results in
a time complexity of O(n).

In Step 3, the time complexity of the DMST al-
gorithm is O(n,my) [15], where ny, is the number
of machines in the primary subsystem, and m, is
the number of resources in the primary subsystem.
Accounting for the possibility that there is more
than one matriarch to apply the DMST algorithm
to, and that the cost of the seed for each matri-
arch’s subsystem needs to be evaluated, the time
complexity of this step is O(ngnym, + ng), where
ng is the number of matriarchs.

In Step 4, the fact that (in the worst case) all pri-
mary subsystem resources have to be visited in or-
der to remove any contained machines results in a
time complexity of O(my,).

In Step 5, all primary subsystem machines have to
be removed from the original machine set, so that
the time complexity of this step is O(np).

Thus the overall time complexity of Steps 1 to 5
during the first iteration of the algorithm is O(2n+
m + ny +my + nonpmy, + no).

14

In the best case, the SI algorithm executes once
and there is only one matriarch. This implies that
np =n, mpy =m and ne = 1, so that the resultant
best-case time complexity is O(3n+nm+2m+1).

In the worst case, either the SI algorithm executes
once and there are m matriarchs, or the SI algo-
rithm executes n times and each machine is a ma-
triarch for a family that has a singleton set of ma-
chines. Thus, we have two possibilities to consider.

The first possibility is n, = n, m, = m and no = n,
so that the resultant time complexity is O(n?m +
4n 4 2m).

The second possibility is n, = 1 and m, = 1 im-
plying that no = 1, and after the first pass through
the algorithm, Steps 2-5 are repeated n — 1 times.
This time complexity is O(2n +m +4) + O((n —
1)(n+4)) = O(n? + 5n + m). O

Proposition [8l

Proof. Let ' = (U,M,R,G) be made up of k
strongly regular disjoint families. From Proposi-
tion [II there are at least k matriarchs. Since each
family is the generation subsystem of a matriarch,
and each of these subsystems is strongly regular,

Proposition M indicates that the minimum |Mg| is
k.

In the proof of Proposition Bl we have shown that
each pass through Steps 1 to 4 of the SI algorithm
produces a seed for a family, before the family is
removed from the original generation system. This
seed for the family contains one machine. If there
are k families in the original system, the SI algo-
rithm will iterate k times before returning a seed
that is the union of the seed sets for each family.
Thus, there will be £ machines in Mg.

Therefore, the number of machines is optimal be-
cause it is the minimum it could be.

By assumption, all the machines in the given gen-
eration system need to be produced. Hence, the
optimal seed for each family must include the least
costly resources such that all machines in the family
are generated. This implies that there must exist a
path between the root vertex and all other vertices
in the directed graph representation of the subsys-
tem of a matriarch, and the DMST that is found
via the Chu-Liu-Edmonds algorithm satisfies this
property with minimal cost. If there are multiple



matriarchs, the resource set that is selected is the
least costly. Taking all such minimal cost resources
produces an optimal seed resource set for each fam-
ily, and since the families are disjoint, the union of
these sets result in a seed that is optimal with re-
spect to the cost of the resources. O

Proposition QL

Proof. As a result of expanding M or R, the rank
of a family will either increase or stay constant.
This is because there are now more machines and
resources in the generation system, and so it is pos-
sible that machines originally located in the outer
layer are now able to produce offspring. Hence, it
is possible that the rank increases.

Consider the original family, I, prior to the expan-
sion of M or R. Let x be a machine in the outer
layer of I'. Since generation always proceeds out-
wards [B] and T is a family, expanding M or R may
result in an increase in the rank of the system. If
this occurs, there is now a degenerate machine y
that is a descendant of z. In other words, now
3(r,,) € R such that G(z, (r,)) = y.

Since y is degenerate, it does not need to belong to
Mg, so that |Mg| remains the same. Also, if (r,)
uses resources that already belong to Rg, then |Rg|
stays unchanged.

However, if (r,) uses resources that differ from
those in Rg, then these resources need to be added
to the resource seed set. Hence, |Rg| increases, pro-
ducing a corresponding increase in |S]|. O
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